browser icon
You are using an insecure version of your web browser. Please update your browser!
Using an outdated browser makes your computer unsafe. For a safer, faster, more enjoyable user experience, please update your browser today or try a newer browser.

Notes on tuning a Hustler 6BTV

Posted by on July 24, 2017

80 Meters, no choke, 8 radials.

80 Meters, no choke, 8 radials.


I thought I would share a few of my notes on tuning up a 6BTV antenna, and constructing a radial field.  I have been using a GAP Challenger DX, (review here), for the past fifteen years, unbeknownst to me, and over that time, water had been slowly seeping into the tuning harness of the antenna.

The harness finally gave up the ghost one day, presenting a dead short to my Solid State ALS-1306 amp, (review here), as I increased power.  At about 800 watts CW, the harness shorted out, killing the ALS-1306, and necessitating the amp make a trip back to ALS-1306 heaven, (Ameritron), to have a replacement RF output device installed.

Replacing the Challenger was one of the options on the table, but I did not want to do a new install of a Challenger– I remember the last install.  The entire phasing harness installation process is not fun, nor is it easy, so– given there were a few things about the Challenger I was not happy with anyway, I began looking for a different antenna.

A used 6BTV came up on the local market.  I knew the history of the antenna, and I had known the owner for decades, so I knew the antenna had not been abused.  I also knew that the antenna was less than a year old.  The price was right, so I purchased it.  It arrived at my QTH with a cracked trap cover for 10 Meters, (I assume this happened in transport), and with  lot of water dripping out of the 20 meter trap.   I ordered replacement trap covers from New-Tronics, and proceeded to replace all the trap covers once the new ones arrived.  Thankfully the previous owner had used Pentrox-A on all sliding parts, so the antenna came apart like butter.  I also noticed that one of the hose clamps used to tighten the 10 meter element was stripped, so I got a new one of those as well.  This pretty well took care of getting all the loose parts in one place in preparation for tuneup of the 6BTV.  You can click any image on this page and get the original in large format.

Information Gathering:

I am one of those people that likes to read all about a process before I start, so in my wanderings around the net I found out a few things about the 6BTV:

  • The factory configuration and spacing diagrams for tuning are for no radials.
  • DX Engineering has a wonderful install guide for the 6BTV which puts the manufacturer’s instruction guide to shame.
  • There are a lot of additional add ons DX Engineering sells for the antenna, all good.
  • I would need a radial field to realize better performance out of the antenna.
  • I was not happy with the manufacturer’s instructions to tune the antenna for the center of the band.  I do mostly CW, or data, so that would not do.

The first thing I discovered was that I wanted to do this by the book, and do it right, so I constructed a step by step process guide to do the install and tuneup.

Install Guide:

One of the first items was to decide where exactly to install the multiband antenna, and have it not affect other antenna, or be affected by other antenna.  I have plans for a four square on 30 Meters one day, so I decided to draw out the final configuration for a two element 40 Meter phased array, and a four square on 30 Meters.  I obtained a plat map from the county, and added the antenna and radial fields for all future antenna.  This helped me select the right location for the 6BTV.  It is the antenna just to the East of the tree in the backyard.  I also installed underground cable feeds, and a remote coax switch on the rear of the work shed, and then ran a single feedline to the house and the shack.

Next I constructed a step by step guide with all the steps I needed to take to get the 6BTV up and operational.

Install steps:

  1. Install support for antenna
  2. Install antenna
  3. Construct Radial Field
  4. Perform very rough tuneup on the antenna.
  5. Measure R value at base of the antenna.
  6. Add radials, and remeasure the R value.
  7. If R value makes no major change from the previous reading exit to step 8, else goto 6.
  8. Define the operating frequency for each band.
  9. Measure actual two to one SWR bandwidth for each band.
  10. Select the center of the two to one spread, and decide where to put it, so that I could operate in the lower parts of the band, and cover the data parts as well.
  11. Tune the antenna to put the center point for a two to one SWR at the correct location on the band to give me no less than one point five to one SWR at the bottom of all bands but 80 Meters.
  12. Put 80 Meters resonance point at around 3.800 MHz, so I can use the antenna on the phone portion of the 80 Meter band.
One down, six more to go...

One down, six more to go…

Install Antenna Support Structure:

The very first thing I did was to call in a locate for all pipes, and cables that might be under my yard.  This step absolves you of all liability if you hit something that you should not hit while digging.  I NEVER dig without a locate.

I next located where each hole needed to be, and then I marked each location with a red circle.  Also given that I had a large number of post holes to dig, I elected to use a powered post hole digger, which I rented from one of the local rental shops.  The thought of digging each each post hole with a hand held post hole digger was not appealing to me at all, and I am not sorry for the money it cost to rent the digger.

Total overview of antenna mount

Overview of antenna mount

I made each hole eight inches in diameter, by two feed deep.  After taking maybe two hours to dig all holes, I returned the post hole digger to the rental shop.  After policing up the dirt, and moving it to low spots in the field, I next dropped about an inch of gravel into each hole.  The gravel keeps water off of the concrete, or at least it is supposed too…

I next purchased a set of six pole levelers.  They are cheap, only a few bucks, and once you have the posts in the concrete, you want to quickly be able to see if the posts are vertical.  If not, you can tap them into place, prior to the concrete setting.  I also wanted a ground rod at each antenna site, so I again headed to the local rental store.  I rented a ground rod driver.  This is an impact driver and it takes about 10 minutes to drive in an eight foot ground rod into gravel and clay.  I have driven in ground rods before here, and that takes about an hour, six of these would take far longer as I would tire out.  I just rented the driver, and spent about an hour and drove them all in.

Antenna Install:

After allowing the concrete to cure for about a week, I installed the DX Engineering Radial Plate, and the DX Engineering Tilt plate for the antenna.  Next I bolted the antenna to the tilt plate, and connected the existing five radials from the old Challenger install to the radial plate.  I used eye rings, to do this, crimping each ring carefully as they would be out in the weather for years to come.

Radial Field:

The Challenger had no need of a radial field, save the three radials used as a counterpoise for 40 Meters.  So I repurposed the three radials, and added 5 more.  That gave me 8 radials, as 40 Meters was the lowest frequency band I had any real interest in, I made them all 1/4 wave long on 40.  The goal is to add as many radials as needed to see a very small change in R while I double the radial count.  When I see little change, or if I approach 36 ohms, I will stop, as the next doubling will do even less than the previous doubling did to reduce R.

40 Meters, no choke, 8 Radials

40 Meters, no choke, 8 Radials

Rough Tuneup:

Next I did a very rough check of the tuning of the antenna, making sure it was in the ham bands, I walked in each band using the AA-54 to check SWR, and as I got to each band, I just got the dip into the band, not at a particular location within the band.  That would come later.

As the radial field changes, the antenna tuning changes, so there is an interaction between the two.  I did not want to spend a few hours getting the antenna tuned to the exact spot in a band, only to have that tuning change as I added radials, or chokes.

Measure R at base of antenna:

Next I dropped into loop mode, measuring the R value then I adding radials, and measuring R again.  I ended up with 13 radials, and will probably make it 16 radials just because 16 is a power of 2, and numbers that are not bother me…  I started with 4 radials, measured R, then added 4 more, that dropped R, I added 8, and R dropped again, although not very much.  I added another 5 radials, (ran out of material), and measured R again, and saw almost no change…  So I concluded doubling again would not win me much lower R values, and called it done!  I am a bit surprised at how fw radials it took to get to this point, and I will be adding more as time goes on anyway, because I believe I will get a bit more performance, but not much beyond 32.

Define the operating frequency for each band:

Now that the radial field was mostly complete, I could actually begin the carefully tuning the antenna.  I first decided in each band where I wanted the low point to be for SWR.  I operate CW more than any other mode, so I wanted to skew all SWR readings to the low end of each band, save 80 Meters– I only do SSB on 80, so I wanted that to be on the high side of 80.  To do this I needed to decide what the bandwidth of the antenna was across my arbitrarily selected worst case SWR conditions  for each band.

I have an ALS-1306 solid state amplifier, and solid state devices do not like high SWR, so I decided that 1.7 to 1 was the worst case I wanted.  I then took whatever the bandwidth was between the low 1.7 to 1, and the high 1.7 to 1 SWR points on each band, 80 through 10, and subtracted the high frequency from the low frequency, that gave me my available bandwidth for every band.  After dividing the bandwidth in half, and adding it to the low end of each band, I had the location I needed to place the low point for SWR for each band.  I ended up with the numbers below:

  • 80 Meters:  3.910 MHz.
  • 40 Meters:  7.133 MHz.
  • 30 Meters: 10.122 MHz
  • 20 Meters: 14.000 MHz.
  • 15 Meters: 21.085 MHz.
  • 10 Meters: 28.400 MHz.

This would give me between 2.00, to 1.7 to 1 SWR at the bottom of each band.  The upper end was left to fall wherever it ended up, in most cases the top end fell past the high end of each ham band.  80 Meters is the only exception, and is treated as a special case.  You will find below the final values for all ham bands, and in most cases the starting point.  Once we hit 15 Meters, the bandwidth is so wide as to cover the entire band, plus a wide margin, so that data is not included.  If you are interested in that data, please feel free to email me, I will send you the raw data files.

Below you will see six images, one for each band, 80, 40, 30, 20, 15, and 10 Meters.  Each image consists of four graphs, from top to bottom the graphs represent the following, SWR as viewed at the feedpoint, R, X, and Z, as viewed from the feedpoint, SWR as viewed from the shack, and R, X, and Z as viewed at the shack.  You can click a graph to get an expanded view, click the expanded view and you will get an even larger view.


Click a graph for an expanded view

80 Meter Overview

80 Meter Overview

40 Meter Overview

40 Meter Overview

30 Meter Overview

30 Meter Overview










20 Meter Overview

20 Meter Overview

15 Meter Overview

15 Meter Overview

10 Meter Overview

10 Meter Overview










All measurements were taken using a RigExpert, AA-54 analyzer.  I am finishing up a review of the AA-54 and expect to have it up on site within a few weeks.  I am most impressed with this device, it is a real instrument, and makes antenna work fun!  Please feel free to comment on the installation here, as I am seeking all input, positive or negative…

13 Responses to Notes on tuning a Hustler 6BTV

  1. Doug Lynch,

    Thanks, Just left a note on my efforts today with a 6BTV and got an invalid security token response to the “Post Comment”. Doug

    • Dave

      Odd, I have not seen that before, thanks for the info. I see it let you post this comment…

  2. Ray

    The purpose of the radials is decrease ground loss resistance and increase the Antenna efficiency, 120 radials gives a theoretical efficiency in the 90s percent. So more then 120 does not really improve the efficiency. It’s not linear, so doubling the radials does not double the efficiency. 60 radials is an efficiency in the 80s. A 1/4 wave AM broadcast antenna has 120 1/4 wave radials. Half wave end fed broadcast antennas use 0.4 wavelength radials. Radial length depends on the number, 16- 33 radials make them 0.1 wavelength.
    Since the loss resistance decreases, as radials are added the feedpoint resistance decreases and SWR may increase as the resistance moves towards the 37 ohms 1/4 wave feed point resistance.
    And low SWR does not indicate resonance, different quantities measured differently. The only
    reason to operate antennas near resonance is the feed point impedance is at its lowest point and it’s easier to match to a 50 transmitter.
    Ray. W8LYJ

  3. Jeff Young N8CMQ

    Hi Dave, you have a very informative article on the BTV antenna!

    My comment would be to monitor the receive signal to noise ratio while adding radials.

    When I installed my 4BTV with an 80 meter resonator, the signal strength kept increasing as I added radials, which I attributed to the antenna SWR getting better. However, as I kept adding radials, the transmit readings leveled off and I was at the “Point of less returns” people always mention, but, I measured the bandwidth getting narrower as I continued adding radials, and the background noise decreasing. The signal strength seemed to remain the same however.

    I am over 144 radials under my antenna, and I want to add more radials, but I want a better antenna analyzer before I continue. I hope to see the noise continue to drop as I add more radials, and find out where the effect stops.

    One thing about my vertical that is different from most others is, I modified mine per a Jerry Sevick article in QST years ago to extend the length of the antenna and add a 100 pf cap to tune out the inductive reactance for a closer to 50 ohm impedance at the base of the antenna. With a better analyzer, I hope to improve the 50 ohm impedance of the antenna and see if the SWR will go to 1:1 at resonance.

    Jeff Young N8CMQ

    • Dave

      Hi Jeff,
      Thanks for the comments here, I would expect to see all you described, but for the S/N change… I have heard others mention that, and I think I am seeing that as well, but without test gear I am a bit reticent to claim it in writing… My guess is that you won’t see a lot more change by adding radials, but it can never hurt to add them! If you do get a way to measure the S/N, or you discover what is causing it, I would be most interested… Please post results here…

  4. Ron


    I am using the 6BTV and the Ameriton ALS 1306 amp. This antenna is a real DX antenna! I have used beams, quads, inverted “V”‘s etc etc, but this vertical is fabulous!

    Question: How did you tune 40M? I cannot find any info on how to shift the SWR on 40.

    The antenna works fine on 40, but I just would like to know if tuning 40 is possible.


    • Dave

      The tuning of this antenna on 40 is a combination of the entire length of the antenna below the 80 meter trap– so if you adjust any band, you adjust 40…

      I tuned the last three 6BTVs starting at 10 meters, and working up the antenna band by band. When I got to the part designated as HSR-4190-1, which is shown on DX Engineering’s very fine assembly instructions, on page 24, located at:, I adjusted the length of that part just above the 30 meter trap, and below the 80 meter trap to effect a change only 40 Meters. Hope this helps…

  5. Bob Powell

    You replied to a post I did this AM on eHamnet re my Hustler 6BTV vert. and included a link to this site. The timing couldn’t be any better! I just got the pipe in the hole and will be getting the antenna assembled soon. Also, you and others convinced me to put radials down. Your remark about the DXE instruction guide for the antenna is spot on. I had downloaded the manufacturer’s installation guide and it was crap. The DXE guides for all their products are superb, clearly written, color photos, etc. They are my go-to for ham stuff.

    I printed out this entire page and will be using it for the technical aspects of the installation. I’ve got to get it done before November as the snow will be flying. Thanks for a great log of how you installed this antenna!

    Bob KD2BOB

    • Dave

      Hi Bob,
      I have now finished tuning my fourth 6BTV antenna. I just build to specs, then use trap tuning. I have to be very careful, as about a 1/16 of an inch makes a huge difference on 30 meters, while 1/2 inch seems the norm on all other bands. I have found that as I get further off center frequency, I hit an area where the trap Q starts to get worse and worse. I try and keep the trap tuning in the high Q area. I can tell by how pronounced the dip is what the Q is doing. As the dip shallows up, I know I am getting too far away from things with just trap tuning, and I put the trap back, then adjust an element length instead. The last 6BTV I did, all bands were tuned close to the digital frequencies. I was not able to get 30 to center on the band, (it was low, and if I moved it up, the trap Q dropped like a rock), but I was able to get the SWR to below 1.5:1 on 30 so that was good enough. Please post your results once you have your antenna up. You made the right choice to add radials, no vertical works well without them.

  6. Matthew King

    I continued to see improvement in my 6-BTV up to 36-37 radials. As I had already pre-cut them, I installed 41. The lawnmower has eaten a few so I’m down to about 36 again. I’d strongly suggest you add in some more up to around that 32-36 mark – I think you’ll find some gains to be had.



    • Dave

      Thanks, I will probably run the count up to 32. What did you see as a difference between say 16 and 32 radials?

  7. James T. Lee, Jr.

    You wrote: “Next I dropped into loop mode, measuring the R value then I adding radials, and measuring R again. I ended up with 13 radials, and will probably make it 16 radials just because 16 is a power of 2, and numbers that are not bother me… I started with 4 radials, measured R, then added 4 more, that dropped R, I added 8, and R dropped again, although not very much. I added another 5 radials, (ran out of material), and measured R again, and saw almost no change… So I concluded doubling again would not win me much lower R values, and called it done.”

    What exactly did you do to “measure R” ? I understand that you wanted an optimum number of radial wires (i.e. you did not want to waste time adding more wires once you got to an acceptable number) but you have not told us HOW you executed this process.

    This is a great article overall — enjoyed the details.


    • Dave

      Thanks for the input. I have made some changes to the wording, and added a bit of information on the devices used to measure R.

Leave a Reply